Smart Manufacturing Is Cloud Computing - GovCloud Network

blog

0
434
Sunday, November 11, 2016

Smart Manufacturing Is Cloud Computing

Smart Manufacturing Is Cloud Computing
As cloud computing simultaneously transforms multiple industries many have wondered about how this trend will affect manufacturing. Often characterized as “staid”, this vertical is not often cited when leading edge technological change is the topic. This view, however, fails to address the revolutionary nexus of cloud computing and the manufacturing industry. Referred to as Digital Thread and Digital Twin; these cloud driven concepts are now driving this vertical’s future.
Digital Thread is a communication framework that connects traditionally siloed elements in manufacturing processes in order to provide an integrated view of an asset throughout the manufacturing lifecycle. Digital thread implementation also requires business processes that help weave data-driven decision management into the manufacturing culture.
A Digital Twin is a virtual representation of a manufacturer’s product used in product design, simulation, monitoring, optimization and servicing. They are created in the same computer-aided design (CAD) and modeling software that designers and engineers use in the early stages of product development. A digital twin is, however, retained for later stages of the product’s lifecycle, such as inspection and maintenance.
Smart Manufacturing Is Cloud Computing
Figure 1– The smart manufacturing landscape https://www.industryweek.com/systems-integration/journey-smart-manufacturing-revolutio
When successfully combined these processes can deliver on the promise of Smart Manufacturing, which include:
·         Ability to receive published data from equipment using secure open standards, analyze and aggregate the data, and trigger process controls back to equipment, systems of record and process workflows across the enterprise and value chain connected via A2A and B2B open standards.
·         Autonomous and distributed decision support at the device, machine and factory level.
·         Ubiquitous use of mined information throughout the product value chain including end-to-end value chain visibility for each product line connecting manufacturer to customers and supplier network.
·         Enhanced information- and analytics-based decision making on large amounts of raw data gathered from the smart manufacturing equipment and processes.
·         New levels of efficiency to support new services and business models including mass customization (highly configured products) and product-as-a-service.; and
·         Provide a broad portfolio of these advanced capabilities to manufacturers of all sizes and in all industry sectors, at acceptable levels of cost and implementation complexity.
Although at first glance these goals seem overly ambitious, they are being realized today because technologies and integration standards have come together to fuel this revolution. Required building blocks include:
·         Smart machines and advanced robotics –These machines recognize product configurations and diagnostic information, and make decisions and solve problems without human intervention.
·         Industrial Internet of Things (IIoT) – Devices with network and internet connectivity that are active participants in event-driven, self-healing manufacturing processes integrated with open standards that support connectivity.
·         Cloud services – On-demand information technology services that can be rapidly provisioned and released with minimal management effort or service provider interaction.
·         Enterprise integration platforms – Platforms that have the ability to receive data broadcast from equipment via secure open standards. These applications analyze and aggregate the data, and trigger process controls, history recording, and work flows that enable business processes across value chain systems that can then be integrated via application-to-application (A2A) and business-to-business (B2B) open standards.
Digital Thread and Digital Twin also enable the evolution in the manufacturing field often referred to as Industry 4.0. This next phase increases manufacturing efficiencies while reducing both cost and time of delivery. It brings together data, cloud computing, and cyberphysical systems in order to deliver:
·         Industrialization where machines supported human work;
·         Optimization where assembly lines increased productivity;
·         Automation, where machines largely replaced humans; and
·         Digitalization, where information technology with its broad portfolio becomes an integral part of manufacturing.
Cloud computing has extended many benefits to manufacturing because those businesses can now:
·         Rely more on standard cloud services allowing them to focus on business-critical functions.
·         Reduce capital expenditures significantly
·         Relieves manufacturer of the burden to license, deploy, and maintain baseline IT services like email, collaboration, unified communication, and human relation management
·         Enhance operational flexibility through the use of rapid IT scalability
In summary, the combination of digital thread, digital twin and cloud computing enables both smart manufacturing and Industry 4.0. If you’re company isn’t deeply leveraging all of these concepts today, you don’t know anything about manufacturing.

This post was brought to you by IBM Global Technology Services. For more content like this, visit Point B and Beyond.


Cloud Musings
↑ Grab this Headline Animator

( Thank you. If you enjoyed this article, get free updates by email or RSS – © Copyright Kevin L. Jackson 2016)

Follow me at https://Twitter.com/Kevin_Jackson

LEAVE A COMMENT

Name*
E-mail*
Phone number*
Your Message

Latest posts

0
78

Digital Transformation and the Mainframe

Digital transformation infuses digital technology into all areas of an organization’s business or mission. Its fundam...

0
615

Composable Architecture Q&A. Are you ready?

Q: Is it time for my company to jump on the composable architecture bandwagon? A: Composable architectures are quickl...

0
157

Increase Productivity by Reducing Technology Distraction: Lessons from Forrester Research

Workplace productivity is hurt every day by the very technology developed and purchased to improve it.  Forrester ann...

0
3391

Cloud Computing Evolves: An Interview with Mats Johansson

Recently, Ericsson Digital released an amazing report on Edge Computing and 5G. In it, they explained how distributed...

0
2573

Unveiling the end-to-end capabilities for the networked society

An Interview with Henrik Basilier  By Kevin L. Jackson The telecom industry is rapidly moving towards a future i...

0
3330

AT&T Finance Solutions GM on Shrimping, Software, and CX

Helping clients address the trends and challenges presented by the Financial Services industry is the main focus for ...

0
7316

The IoT Nexus: Bosch Connected World 2019 in Berlin

Next week, I will be influencing #LikeABosch as I accept an invitation from the company to attend Bosch ConnectedWorl...

0
2725

Survive and Thrive With Digital Transformation

First cloud computing then multi-cloud. How can we get ahead of this digital transformation nightmare? These are the ...

0
1018

The “George Jetson” of Today

He grew up in Silicon Valley, landed his first job at Apple Computers, was introduced to Nobel Prize winners by his d...

0
3989

MWC19: Where Telecommunications and Cloud Meet

As a cloud solution architect, my passion is learning the details about how cloud computing uniquely supports specifi...